Targeting rictor inhibits mouse vascular tumor cell proliferation and invasion in vitro and tumor growth in vivo.

نویسندگان

  • N N Zheng
  • X D Ding
  • H P Zhang
چکیده

Vascular tumor is an abnormal buildup of blood vessels in the skin or internal organs that can lead to disfigurement and/or life-threatening consequences. The mechanism of hemangiogenesis remains unknown. The aim of this study was to assess the role of rapamycin-insensitive companion of mTOR (Rictor) in control of vascular tumor malignant biological behavior and cell signaling mechanism in Mouse Hemangioendothelioma Endothelial Cells (EOMA cells) and nude mouse model. Knocking down rictor was mediated by lentivirus shRNA. The role and mechanism of rictor in vascular tumor were assessed by western blotting, wst-1 proliferation assay, matrigel invasion assay and xenograft vascular tumor growth. Our results in vitro showed that loss of rictor down-regulated phosphorylation of AKT and S6 by which EOMA cells growth and proliferation were greatly suppressed. Knock down of rictor also inhibited the invasion of EOMA cells. Furthermore, we demonstrated that knock down of rictor inhibited xenograft vascular tumor growth in nude mice. Taken together, we purpose that rictor contributed to vascular tumor growth and progression. Targeting rictor becomes an effective strategy in vascular tumor treatment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo immunotherapy of lung cancer using cross-species reactive vascular endothelial growth factor nanobodies

Objective(s): Lung cancer is the main leading cause of cancer death worldwide. Angiogenesis is the main step in proliferation and spreading of tumor cells. Targeting vascular endothelial growth factor (VEGF) is an effective approach for inhibition of cancer angiogenesis. Nanobodies (NBs) are a novel class of antibodies derived from the camel. Unique characteristics of Nbs like their small size ...

متن کامل

Evaluation of a 99mTc-tricine Vascular Disrupting Agent as an In-vivo Imaging in 4T1 Mouse Breast Tumor Model

Colchicine as a vascular disrupting agent creates microtubule destabilization whichinduces vessel blockage and consequently cell death. Accordingly, colchicines and itsanalogues radiolabeled with 99mTc may have potential for visualization of tumor. In this work,deacetylcolchicine a colchicine analogue was labeled with 99mTc via tricine as a coligandand characterized for its tumor targeting prop...

متن کامل

Evaluation of a 99mTc-tricine Vascular Disrupting Agent as an In-vivo Imaging in 4T1 Mouse Breast Tumor Model

Colchicine as a vascular disrupting agent creates microtubule destabilization whichinduces vessel blockage and consequently cell death. Accordingly, colchicines and itsanalogues radiolabeled with 99mTc may have potential for visualization of tumor. In this work,deacetylcolchicine a colchicine analogue was labeled with 99mTc via tricine as a coligandand characterized for its tumor targeting prop...

متن کامل

miR-506 inhibits cell proliferation and invasion by targeting TET family in colorectal cancer

Objective(s): Ten-eleven translocation (TET) family members have been shown to be involved in the development of many tumors. However, the biological role of the TET family and its mechanism of action in colorectal carcinogenesis and progression remain poorly understood. Materials and Methods:We measured the expression levels of TET family members in colorectal cancer (CRC) specimens, in the c...

متن کامل

Long non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway

Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neoplasma

دوره 60 1  شماره 

صفحات  -

تاریخ انتشار 2013